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We study the stability of the interface between (a) two adjacent viscous layers flowing
due to gravity through an inclined or vertical channel that is confined between two
parallel plane walls, and (b) two superimposed liquid films flowing down an inclined
or vertical plane wall, in the limit of Stokes flow. In the case of channel flow, linear
stability analysis predicts that, when the fluids are stably stratified, the flow is neutrally
stable when the surface tension vanishes and the channel is vertical, and stable
otherwise. This behaviour contrasts with that of the gravity-driven flow of two
superimposed films flowing down an inclined plane, where an instability has been
identified when the viscosity of the fluid next to the plane is less than that of the top
fluid, even in the absence of fluid inertia. We investigate the nonlinear stages of the
motion subject to finite-amplitude two-dimensional perturbations by numerical
simulations based on boundary-integral methods. In both cases of channel and film
flow, the mathematical formulation results in integral equations for the unknown
interface and free-surface velocity. The properties of the integral equation for multi-
film flow are investigated with reference to the feasibility of computing a solution by
the method of successive substitutions, and a deflation strategy that allows an iterative
procedure is developed. In the case of channel flow, the numerical simulations show
that disturbances of sufficiently large amplitude may cause permanent deformation in
which the interface folds or develops elongated fingers. The ratio of the viscosities and
densities of the two fluids plays an important role in determining the morphology of
the emerging interfacial patterns. Comparing the numerical results with the predictions
of a model based on the lubrication approximation shows that the simplified approach
can only describe a limited range of motions. In the case of film flow down an inclined
plane, we develop a method for extracting the properties of the normal modes,
including the ratio of the amplitudes of the free-surface and interfacial waves and their
relative phase lag, from the results of a numerical simulation for small deformations.
The numerical procedure employs an adaptation of Prony’s method for fitting a signal
described by a time series to a sum of complex exponentials ; in the present case, the
signal is identified with the cosine or sine Fourier coefficients of the interface and free-
surface waves. Numerical simulations of the nonlinear motion confirm that the
deformability of the free surface is necessary for the growth of small-amplitude
perturbations, and show that the morphology of the interfacial patterns developing
subject to finite-amplitude perturbations is qualitatively similar to that for channel
flow.
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1. Introduction

The stability of multi-layer channel flow and multi-film flow down a plane has been
the object of a number of theoretical and experimental studies following the pioneering
work of Yih (1967). Many of these studies have been motivated by a desire to
understand manufacturing practice and improve on engineering design; multi-layer
channel flows arise in industrial processes related to the manufacturing of laminated
materials (Han 1981), and multi-film flows arise in the coating of photographic
emulsions and magnetic suspensions (Kistler & Schweizer 1997). In both cases, a
contrast in the viscosities of the layers or films may initiate instabilities and lead to two-
or three-dimensional wavy patterns that are detrimental to the quality of the
manufactured product.

Although a precise physical mechanism for the instability has been elusive, several
observations that facilitate physical intuition have been made. Yiantsios & Higgins
(1988) pointed out that a discontinuity in the shear rate across an interface, combined
with inertial effects, is a prerequisite for the growth of small perturbations in two-layer
Couette or Poiseuille flow. In Poiseuille flow, the shear rate may remain continuous
across the interface even though the fluids may have different physical properties.
Loewenherz & Lawrence (1989) identified instability in two-film flow down an inclined
plane in the absence of fluid inertia. Chen (1993) emphasized that the free-surface
deformability is necessary for the growth of small perturbations, and attributed the
unstable behaviour to a resonance between the interface and free-surface waves. When
the free surface is maintained flat by infinite surface tension, the instability does not
appear. Three-layer channel flow and three-film flow down a plane have also been
shown to be unstable in the limit of zero Reynolds number when the interfacial
tensions are sufficiently small and the viscosity ratios lie within certain ranges (Li 1969;
Weinstein & Kurz 1991). These results attest to the subtlety of the instability even
under conditions of Stokes flow. A review of the literature, and numerical simulations
of two-layer Couette or Poiseuille channel flow with finite-amplitude perturbations was
presented by Pozrikidis (1997c). Reviews for film flow were presented by Chen (1992,
1993).

In the first part of this paper, §2, we consider the instability of two layers flowing
through an inclined channel that is open at both ends, under conditions of Stokes flow
and in the absence of a mean pressure gradient. The gravity-driven flow is an
interesting hybrid of the shear- and pressure-driven flows, and provides us with a rich
family of unidirectional base flows upon which a disturbance may grow or decay; the
profile of the base flow is parametrized by the relative viscosities and densities of the
two fluids. Linear stability analysis, to be discussed in §2, predicts that, in the limit of
Stokes flow, and when the fluids are stably stratified, the flow is either stable or
neutrally stable under any conditions. In the numerical investigations, we simulate the
evolution of large-amplitude interfacial deformations using a boundary integral
method for Stokes flow, and illustrate the precise role of the viscosity ratio and surface
tension.

Tilley, Davis & Bankhoff (1994a, b) studied the instability of the two-layer flow in
an inclined channel for a specified flow rate. When the flow rate is required to vanish,
the channel is closed at both ends. In the first paper, these authors carried out a linear
stability analysis for small-amplitude perturbations. In the second paper, they
developed an asymptotic theory to describe the evolution of long waves, succeeded it
by a weakly nonlinear analysis that produces a Kuramoto–Sivashinsky type of
equation, and discussed the steepening of waves. Severtson & Aidun (1996) extended
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the linear stability analysis to the case of combined Couette–Poiseuille flow. In
Appendix A of this paper, we develop a lubrication-flow model which is the
counterpart of that arising from the first-order expansion of Tilley et al. (1994b), with
variations due to differences in the global constraints. Comparing the results of
numerical simulations obtained by the lubrication approximation to those obtained by
the boundary-integral method allows us to assess the physical relevance of the
simplified approach.

In the second part of this paper, §3, we consider the instability of the two-film Stokes
flow down an inclined plane. The problem has been discussed by several previous
authors with emphasis on the destabilizing effect of viscosity stratification, and the
distinction between the free-surface and interface unstable modes. The former
emphasizes the growth of the free surface, and the latter emphasizes the growth of the
interface. In an unpublished series of reports, C. Kobayashi & L. E. Scriven (1981, 1982
Spring AIChE Meeting) and C. Kobayashi, K. Nohjo, N. Chino, Y. Yoshimura (1986
Spring AIChE Meeting) formulated and solved, by a Galerkin finite-element method,
the linear stability problem for temporally and spatially growing perturbations, and
compared their results to laboratory observations on a slide coating apparatus
(Kobayashi 1992, 1995). Their results demonstrated that the flow can be unstable even
at vanishing Reynolds number.

Loewenherz & Lawrence (1989) formulated and tackled the linear stability problem
analytically for fluids of equal density, in the absence of interfacial and free-surface
tension, and in the limit of Stokes flow. Their results showed explicitly that two-film
flow can be unstable when the less-viscous fluid is adjacent to the wall. Their work was
extended by Weinstein (1990) and Chen (1992) to non-Newtonian fluids and non-zero
Reynolds numbers, and by Chen (1993) to a broader range of relative film thickness,
non-zero surface tension, and non-zero Reynolds numbers. Evolution equations for
perturbations of long wavelength based on lubrication models were derived and
discussed by Kliahkhander & Sivashinsky (1997), In §3, we perform simulations of
two-film flow with large-amplitude interfacial deformations using a boundary-integral
method. The main objective is to compare the nature of the perturbed interfacial
shapes to those developing from the instability of the two-layer channel flow.

One reason for studying multi-layer and the multi-film flows together, is that they
both reduce to single-film flow down an inclined plane in special limits. In the case of
channel flow, single-film flow emerges when the density and viscosity of one of the
layers are negligible compared to those of the other layer. In the case of two-film flow,
single-film flow emerges when the thickness of the upper film vanishes, or else the
physical properties of the two fluids are equal and the interfaces have identical tensions.
In spite of this similarity, channel flow is stable in the limit of Stokes flow, whereas film
flow is unstable when the viscosity of the upper fluid is higher than that of the fluid next
to the wall, as discussed in the previous paragraphs. The stability of single-film flow has
been discussed by a number of authors following the seminal work of Yih (1963). A
review was given by Chang (1994).

To carry out the numerical simulations, we develop two separate boundary-integral
formulations, one for channel and the second for multi-film flow. These separate
formulations allow us to obtain most accurate results with the least expense in
computational time. In the case of multi-film flow, we study the properties of the
Fredholm integral equation for the interface and free-surface velocities, and find them
to be somewhat different from those of integral equations for flows with a single
interface or multiple interfaces separating the same fluids. Knowledge of the eigenvalue
spectrum allows us to deflate the double-layer operator and compute solutions by the
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method of successive substitutions. A desire to study the growth of unstable normal
modes leads us to develop an apparently novel method for extracting them from the
results of a numerical simulation with small deformations, based on Prony’s method
of exponential fitting. The method has a more general applicability and is suitable for
studies of linear stability in a broader context, as will be discussed in the concluding
section.

2. Two-layer flow in a channel

Consider the gravity-driven flow of two stratified fluids in a channel that is confined
between two parallel plane walls located at y¯³H. The channel is exposed to a
constant-pressure ambient at both ends, and is inclined at an angle θ

!
with respect to

the horizontal, as shown in figure 1(a). The lower and upper fluids are designated,
respectively, with the superscript or subscript 1 and 2.

2.1. Unidirectional flow

In the simplest possible configuration, the interface is flat, located at y¯Y, and the
flow within both layers is unidirectional, directed along the x-axis. To derive
expressions for the streamwise velocity profile u

x
(y), we require that the velocity vanish

at the two walls, and the velocity and shear stress remain continuous across the
interface. Using elementary methods, we find

uud,"
x

¯®
ρ
"
g sin θ

!

2µ
"

(y®Y )#ξ
"
(y®Y )uud,I

x
(2.1a)

and

uud,#
x

¯®
ρ
#
sin θ

!

2µ
#

(y®Y )#ξ
#
(y®Y )uud,I

x
, (2.1b)

where the superscript ud stands for unidirectional flow, ρ
"
, µ

"
are the density and

viscosity of the lower fluid, ρ
#
, µ

#
are the density and viscosity of the upper fluid, and

g is the magnitude of the acceleration due to gravity. The constant

ξ
"
¯

ρ
"
gH sin θ

!

µ
"

1

1R

λ®βR#

λR
(2.2a)

is the shear rate in fluid 1 evaluated at the interface, λ¯µ
#
}µ

"
is the viscosity ratio,

β¯ ρ
#
}ρ

"
is the density ratio, and R¯H

#
}H

"
is the ratio of the layer thicknesses.

Continuity of shear stress demands that the shear rate of fluid 2 at the interface be

ξ
#
¯ ξ

"
}λ. (2.2b)

The interfacial velocity is found to be

uud,I
x

¯
ρ
"
gH # sin θ

!

µ
"

1βR

(1R)#

2R

λR
. (2.3)

The pressure fields corresponding to the velocity profiles (2.1a, b) are

pud,"¯P
I
ρ

"
g cos θ

!
(y®Y ), pud,#¯P

I
ρ

#
g cos θ

!
(y®Y ), (2.4a, b)

where P
I

is the unspecified pressure at the interface.
Composite velocity profiles for layers of equal thicknesses, R¯ 1, and various

combinations of λ and β are drawn in figure 1(b, c). Figure 1(b) shows the effect of β
for fixed viscosity ratio λ¯ 1; when β¯ 1, we obtain parabolic flow with a symmetric
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F 1. (a) Schematic illustration of gravity-driven flow of two layers through a channel confined
between two parallel plates inclined at an angle θ

!
with respect to the horizontal ; the dashed line

shows the location of the unperturbed interface. (b) Composite profiles of the reduced velocity
uW
x
3 u

x
µ
"
}(ρ

"
gH # sinθ

!
) for unidirectional flow with viscosity ratio λ¯µ

#
}µ

"
¯ 1 and density ratio

β¯ ρ
#
}ρ

"
¯ 1, 0.5, 0. (c) Composite velocity profiles for unidirectional flow with β¯ 1 and λ¯ 1,

2, 5, 10.

velocity profile ; decreasing the density of the upper fluid, and thus the value of β,
reduces the parabolicity of the velocity profile within it ; when β¯ 0, the upper fluid
executes simple shear flow driven by the interfacial velocity. Figure 1(c) shows the
effect of the viscosity ratio λ for fixed density ratio β¯ 1, which is identical to pressure-
driven flow in a channel with pressure gradient ®dP}dx¯ ρ

"
g sin θ

!
. When λ¯ 1, we

obtain parabolic flow with a symmetric velocity profile ; as the viscosity of the upper
fluid and thus the value of λ is raised, the interfacial velocity is reduced; in the limit
as λ tends to infinity, the interfacial velocity vanishes and the upper fluid becomes
stationary.
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2.2. Linear wa�es

Next, we consider the motion of the interface subject to a two-dimensional periodic
perturbation that disturbs the interface in a sinusoidal fashion with amplitude A

!
and

wavelength L. Since the channel is exposed to a constant-pressure ambient at both
ends, the perturbation is not allowed to generate a net pressure drop over each period.
The behaviour of the linear wave is affected by seven dimensionless parameters
including: the unperturbed layer thickness ratio R¯H

#
}H

"
, the channel inclination

angle θ
!
, the viscosity ratio λ, the density ratio β, the capillary number Ca¯

ρ
"
gH # sin θ

!
}(2γ), and the geometrical ratios L}H and A

!
}H. As the channel tends to

become horizontal – that is, as θ
!
tends to zero – the capillary number tends to vanish

independently of the physical properties of the fluids, and this requires an alternative
scaling. In this limit, the two parameters β and Ca merge to give a new dimensionless
group expressed by the Bond number Bo¯ ρ

"
(1®β) gH #}γ¯ 2(1®β)Ca}sin θ

!
.

Assuming that : (a) an appropriate Reynolds number of the flow is so small that the
effects of fluid inertia can be neglected uniformly and the motion of both fluids is
governed by the equations of Stokes flow, and (b) the amplitude ratios A

!
}H and A

!
}L

are both infinitesimal, we linearize the kinematic and dynamic condition at the
interface and find that the sinusoidal perturbation decays or amplifies depending on the
channel inclination angle and on the magnitudes of the density ratio and capillary
number. For example, when the channel is horizontal and the upper fluid is heavier
than the lower fluid, β" 1, the interface is susceptible to the Rayleigh–Taylor
instability at sufficiently large values of the capillary number. When the channel is
vertical, the interfacial waves are stable for non-zero surface tension or finite capillary
number, and neutrally stable for zero surface tension or infinite capillary number.
More generally, the linear analysis shows that small-amplitude interfacial waves evolve
such that the position of the interface is described by the equation

y¯ y
I
(x, t)¯YA(t) cos (k(x®c

P
t)), (2.5)

where k¯ 2π}L is the wavenumber, c
P

is the phase velocity of the perturbation,

A(t)¯A
!
exp (σ

I
t) (2.6)

is the instantaneous amplitude of the perturbation, σ
I

is the growth rate, and A
!
3

A(t¯ 0). Lengthy relations between c
P
,σ

I
and the aforementioned geometrical and

physical parameters may be derived in closed form working in the standard fashion
(e.g. Pozrikidis 1997a, Chap. 9). A  program that evaluates c

P
and σ

I
is

available from the author on request. Later in this Section, we shall compare the
predictions of the linear theory with the results of numerical simulations for finite-
amplitude perturbations.

2.3. Boundary-integral formulation

We are mainly interested in studying the evolution of finite-amplitude waves by
numerical simulations based on boundary-integral methods. In a recent paper,
Pozrikidis (1997c) showed that the interfacial velocity u satisfies the following
Fredholm integral equation of the second kind:

u
j
(x

!
)¯

1β

1λ
uR(")
j

(x
!
)®

1

4πµ
"

2

1λ&
I

(∆f
i
®∆f R

i
) (x)G "P−#W

ij
(x,x

!
; α¯ 0) dl(x)


1

2π

1

1λ&
PV

I

[(1®λ) u
i
(x)®(1®β) uR(")

i
(x)]T "P−#W

ijk
(x,x

!
; α¯ 0) n

k
(x) dl(x), (2.7)
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where the point x
!
is located at the interface, and the rest of the variables are defined

as follows. The tensor G "P−#W(x,x
!
; α) is the periodic Green’s function of two-

dimensional Stokes flow in a channel, representing the velocity due to an array of point
forces ; the value α¯ 0 signifies that the flow due to a periodic array of point forces
does not generate a net pressure drop, 1P stands for singly periodic, and 2W stands for
two walls ; T "P−#W(x,x

!
; α) is the associated stress tensor. The first term and the

double-layer integral on the right-hand side of equation (2.7) involve the reference
velocity

uR,"¯
ρ
"
g sin θ

!

2µ
"

(H #®y#) e
x
, (2.8)

where e
x

is the unit vector along the x-axis. The quantity ∆f(x)¯γκn is the jump in
traction across the interface, and κ is the curvature of the trace of the interface in the
(x, y)-plane. The quantity

∆fR¯∆ρgy 9 n
x
cos θ

!
®n

y
sin θ

!

®n
x
sin θ

!
n

y
cos θ

!

:®(P
"
®P

#
)n (2.9)

is the jump in traction across the interface of two properly defined reference flows for
the lower and upper fluid, with P

"
and P

#
being two constants. Finally, n is the unit

normal vector pointing into the fluid 1, I is one period of the interface, and PV signifies
the principal value of the double-layer integral.

Two special limits are worth noting. First, when λ¯ 1 and β¯ 1, the double-layer
integral on the right-hand side of (2.7) vanishes yielding a representation for the
velocity in terms of a single-layer potential alone. Secondly, when λ¯ 0 and β¯ 0, we
may introduce the disturbance interface velocity uD3u®uR("), and obtain the
simplified integral equation

uD
j
(x

!
)¯®

1

2πµ
"

&
I

(∆f
i
®∆fR

i
) (x)G "P−#W

ij
(x,x

!
; α¯ 0) dl(x)


1

2π&
PV

I

uD
i
(x)T "P−#W

ijk
(x,x

!
; α¯ 0) n

k
(x) dl(x) (2.10)

which describes the flow of a liquid film with a free surface down a horizontal or
inclined plane wall coinciding with the lower wall. In this limit, however, the use of an
alternative Green function for semi-infinite flow bounded by a plane wall is more
appropriate as it expedites the numerical solution.

The integral equation of the second kind (2.7) was solved by the iterative method
described by Pozrikidis (1997c). The change in the area of each layer due to numerical
error through a complete simulation was less than 0.1% of the initial value, and much
less than that in most cases. In a typical simulation, each period of an interface was
described by 32 to 80 marker points. The computational cost depends strongly on the
number of marker points and flow conditions, as will be discussed in the following
subsections, demanding from 1 to 60 hours of CPU time on a  station 20.

2.4. Numerical simulations

It was mentioned earlier that, when the densities of the two layers are equal, β¯ 1, the
flow behaves similarly to pressure-driven flow in a channel with pressure drop over
each period equal to ®∆P}L¯ ρ

"
g sin θ

!
, provided that the perturbation is not
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(a) (b)

(c) (d)

F 2(a–d ). For caption see facing page.

allowed to generate a net pressure drop. The evolution of the interface subject to large-
amplitude perturbations was studied by Pozrikidis (1997c). The results showed the
existence of a critical reduced amplitude of the perturbation (A

!
}L)

cr
below which the

interfacial waves decay, and above which the interface suffers permanent deformation.
The value of (A

!
}L)

cr
depends on the magnitudes of the capillary number Ca¯

ρ
"
g sin θ

!
H #}(2γ) and viscosity ratio λ. Keeping A

!
}L and Ca constant and increasing

λ leads to permanent deformation.
Since the motion for β¯ 1 has been described, and since β" 1 corresponds to

unstably stratified flow that lies beyond our scope, we consider flows with β! 1 and
examine the effect of the capillary number. In figure 2(a–d ), we present sequences of
evolving interfacial profiles in a vertical channel, θ

!
¯ "

#
π, for β¯ 0, λ¯ 1, L}H¯ 2,

A
!
}L¯ 0.15 and Ca¯ 0.5, 5, 20, and ¢. For Ca¯ 0.5 and 5, the interfacial waves

decay and the interface tends to become flat at long times; for Ca¯ 20, and ¢, a saw-
tooth pattern develops with the dense fluid on the left attempting to penetrate the light
fluid on the right. The computations were terminated when small-scale irregularities
developed near the crests, possibly indicating the formation of wisps, and the motion
could no longer be computed with a reasonable cost.

The behaviour of the waves is summarized in figure 2(e, f ) where we display the
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F 2. Effect of the capillary number on the stability of the two-layer channel flow. (a–d )
Characteristic stages in the evolution of interfacial waves in a vertical channel, θ

!
¯ "

#
π, for density

ratio β¯ 0, viscosity ratio λ¯ 1, reduced wavelength L}H¯ 2, reduced initial amplitude of the
perturbation A

!
}L¯ 0.15, for (a) Ca¯ 0.5, (b) 5, (c) 20, (d ) ¢. (e) Evolution of maximum interfacial

displacement from the unperturbed position with respect to dimensionless time tW 3 tρ
"
gH}µ

"
and

( f ) x-location where the maximum occurs ; the dashed lines represent the predictions of the linear
theory.
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F 3. Effect of the disturbance amplitude on the stability of the two-layer channel flow.
Characteristic stages in the evolution of interfacial waves in a vertical channel, θ

!
¯ "

#
π, for β¯ 0,

λ¯ 1, L}H¯ 2, A
!
}L¯ 0.30, and Ca¯ 5. Comparison with figure 2(b) shows that increasing the

amplitude of the perturbation destabilizes the flow.

evolution of the maximum height of the interface a reduced by the initial amplitude
a
!
¯A

!
, and the x-positions where the maximum occurs, x

max
, for the four cases shown

in figure 2(a–d ). The dashed lines represent the analytical results of linear theory for
small-amplitude waves, predicting that in the absence of surface tension, Ca¯¢,
small-amplitude waves are neutrally stable. The numerical results in figure 2(e) show
that finite-amplitude effects slow down the decay of the interfacial waves. For Ca¯
0.5, 5, the rate of decay at long times is close to that predicted by linear theory.
Correspondingly, the phase velocity of the wave crests dx

max
}dt agrees well with that

predicted by linear theory at small capillary numbers, but significant differences are
observed at high capillary numbers.

To illustrate the effect of the amplitude of the perturbation, in figure 3 we present
a sequence of interfacial profiles for θ

!
¯ "

#
π, β¯ 0, λ¯ 1, L}H¯ 2, A

!
}L¯ 0.3, and

Ca¯ 5. In this case, the interface does not recover the flat shape, as it did for
A

!
}L¯ 0.15, but develops a convoluted interfacial shape. We note, in particular, the

curved shape near the left-hand wall where the velocity profile of the base flow is
parabolic, and the finger-like shape near the right-hand wall where the velocity profile
of the base flow is linear due to the vanishing density of the fluid on the right. It is clear
that there is a critical amplitude of the perturbation, A

!,cr
, above which the interface

does not recover the flat shape.
A rough estimate for the critical amplitude may be derived by comparing the time

it takes for the interfacial wave to decay according to linear theory, denoted by τ
D
, and

the time it takes for a pair of successive interfacial extrema to meet, having travelled
a combined distance equal to L}2 under the action of the unperturbed flow, denoted
by τ

T
, thus generating a saw-tooth-like interfacial profile. Assuming that the

amplitude of the wave has decayed in the value 0.1L after the time period τ
D
, and using

equation (2.6), we find τ
D

σ
I
¯ ln (L}A

!
)®2.303. The choice of the threshold amplitude

0.1L is significant only insofar as it indicates that the perturbation has become small
compared to the wavelength; at that point, linear stability theory, predicting decay,
will begin to be valid. To estimate τ

T
, we note that the velocity at the crest of the upper

fluid relative to the velocity at the trough of the lower fluid is equal to ξ
"
A

!
ξ

#
A

!
,

where the shear rates ξ
"

and ξ
#

are given in equations (2.2a, b). Accordingly, we set
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τ
T

¯L}[2(ξ
"
ξ

#
)A

!
], assume that the interface will fold when τ

D
" τ

T
, and derive the

following nonlinear algebraic equation for the critical amplitude:

ln
L

A
!,cr

®
σ
I

2(ξ
"
ξ

#
)

L

A
!,cr

®2.303¯ 0. (2.11)

Using the values ξ
"
¯ ξ

#
¯ 0.25ρ

"
gH sin θ

!
}µ

"
and σ

"
µ
"
}(ρ

"
gH sin θ

!
)¯®0.354}Ca,

the latter provided by linear stability theory, we find A
!,cr

}L¯ 0.72, 0.20, 0.13, 0.10,
respectively, for Ca¯ 0.5, 5, 20 and ¢. These critical values are consistent with the
results of the simulations.

Next, we consider the effect of the viscosity ratio λ keeping all other parameters
constant. It was mentioned earlier that when β¯ 0 and λ¯ 0, the layer flow reduces
to single-film flow down an inclined plane. To study this limit, we developed an
alternative boundary-integral formulation that is applicable in the more general case
of multi-film flow, and will be described in §3 and Appendix B. This alternative
formulation employs the Green’s function of Stokes flow for semi-infinite flow
bounded by a plane wall, which is much less expensive to compute than the Green’s
function for channel flow.

In figure 4(a–c), we present sequences of evolving interfacial profiles for a vertical
channel, θ

!
¯ "

#
π, with β¯ 0, λ¯ 0, 0.1 and 10, L}H¯ 2, A

!
}L¯ 0.15, and Ca¯ 5;

when λ¯ 0.1, the fluid on the left is ten times more viscous than the fluid on the right.
The evolution for λ¯ 1 was depicted in figure 2(b). First, we observe that when
λ¯ 0, 0.1, the flat part of the interface slopes down to the right, whereas when
λ¯ 1, 10 it slopes down to the left. The qualitative features of the motion for λ¯ 0 is
consistent with that described by Gwynllyw & Peregrine (1996) using a different
numerical method. Secondly, when λ¯ 0, 0.1 and 1, the interfacial waves decay and
the interface tends to become flat at long times, whereas λ¯ 10, corrugations of nearly
permanent form develop at long times. Thus, increasing the viscosity ratio, while
keeping all other parameters constant, has a destabilizing influence on finite-amplitude
perturbations. More direct evidence for this behaviour is offered in figure 4(d, e),
showing the evolution of the reduced amplitude a}a

!
and the corresponding x-position.

The predictions of the linear theory, represented by the dashed line, provide us with a
fair description of the early stages of the motion for the large-amplitude perturbations.

To explain the permanent deformation of the interface with increasing λ, we offer
two arguments. First, we introduce the alternative capillary number

Ca«3
µ
"
ξ
"
H

"

γ
¯

1

R

µ
#
ξ
#
H

#

γ
¯Ca 0 2

1R1
#λ®βR#

λR
(2.12)

which is defined with respect to the shear stress at the location of the unperturbed
interface. For the conditions considered here, β¯ 0, λ¯ 0, 0.1, 1, 10 and Ca¯ 0.10
correspond, respectively, to Ca«¯ 0, 0.455, 0.250, 4.545. The increasing magnitude of
Ca« with λ explains the occurrence of the instability. Secondly, we use equation (2.11)
to estimate the critical amplitude, and find A

!,cr
}L¯ 0.68, 0.20, 0.10 for λ¯ 0.1, 1, 10,

consistent with the results of the simulations.

2.5. Lubrication flow

In Appendix A, we formulate a simplified theory that describes the evolution of
interfacial waves whose period is long compared to the channel width, corresponding
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(a) (b) (c)

F 4(a–c ). For caption see facing page.

to the leading-order small-wavenumber asymptotic expansion. The outcome of this
theory is a highly nonlinear partial differential equation in x and t for the position of
the interface. The equation is solved by a finite-difference method. The lubrication-flow
model is expected to produce reliable results as long as the characteristic size of the
interfacial patterns is large compared to half the channel width H. This requires that
the interface can be described in terms of a single-valued function of x, and the slope
of this function is small compared to unity at any point. Interfacial folding cannot be
captured, but is suggested by the continued steepening of the interfacial profiles leading
to discontinuous shapes.

To investigate the effectiveness of the simplified approach, we compare the results of
numerical simulations conducted on the basis of it, with the results of simulations
based on the boundary-integral method. In figure 5(a–c), we present sequences of
evolving profiles for θ

!
¯ "

#
π, β¯ 0, λ¯ 10, L}H¯ 2, and A

!
}L¯ 0.15, computed by

the finite-difference methods discussed in Appendix A, all with 64 subdivisions over
each wavelength. Figure 5(a) shows results for Ca¯ 5 obtained by the implicit centred-
difference method. The explicit method requires an exceedingly small time step to
suppress numerical instabilities due to the interfacial tension. Comparing the
developing profiles to those shown in figure 4(c) reveals that the lubrication-flow model
does not describe the unstable behaviour at this moderate wavenumber. Figure 5(b)
displays results for Ca¯¢ obtained by the explicit centred-difference method,
showing the development of saw-tooth-type waves familiar from figure 4(c). Numerical
instabilities set in when the interfacial waves become steep, suggesting interface folding.
The oscillations disappear when the centred-difference method is replaced by an
upwind-differencing method, and the interface returns to the flat shape as shown in
figure 5(c). This, however, only serves to warn us that numerical diffusivity may
drastically alter the nature of a problem under consideration. Similar results are
obtained for longer wavelengths, as shown in figure 5(d–f ) for θ

!
¯ "

#
π, β¯ 0, λ¯ 10,

L}H¯ 6, and A
!
}L¯ 0.05.

Overall, the lubrication flow model emerges as a useful tool for assessing the
qualitative features of the motion, even for moderate-wavelength perturbations and up
to the point where parts of the interface becomes steep.
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F 4. Effect of the viscosity ratio on the stability of the two-layer channel flow. Characteristic
stages in the evolution of interfacial waves for a vertical channel, θ

!
¯ "

#
π, for β¯ 0, L}H¯ 2,

A
!
}L¯ 0.15, Ca¯ 5, and (a) λ¯ 0, (b) 0.1, (c) 10. (d ) Evolution of the maximum interfacial displace-

ment from the unperturbed position, and (e) x-location where the maximum occurs with respect to
dimensionless time tW 3 tρ

"
gH}µ

"
; the dashed lines represent the predictions of the linear theory for

small-amplitude waves. The line indicated by an arrow in (d ) corresponds to λ¯ 0.1, and
A

!
}L¯ 0.05, included to confirm agreement with linear theory.
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(a) (b) (c)

(d) (e) ( f )

F 5. Evolution predicted by a simplified model based on the lubrication approximation. (a–c)
Stages in the evolution of interfacial waves in a vertical channel, θ

!
¯ "

#
π, for β¯ 0, L}H¯ 2,

A
!
}L¯ 0.15, and λ¯ 10: (a) Ca¯ 5, evolution computed by the implicit centred-difference method;

(b) Ca¯¢, evolution computed by the explicit centred-difference method; (c) Ca¯¢, evolution
computed by the explicit upwind differencing method. (d–f ) Same as in (a–c), but for a longer wave
with L}H¯ 6, and A

!
}L¯ 0.05.

3. Two-film flow down an inclined plane

We turn now to considering the gravity-driven flow of two superimposed films down
an inclined plane, which is the second member of the inclusive family of multi-film
flows with N superimposed films depicted in figure 6. The lower and upper fluids are
labelled, respectively, with the subscript 1 and 2. Correspondingly, the interface and
free surface are labelled, respectively, with the subscript 1 and 2.

3.1. Unidirectional flow

In the unperturbed state, the interface and free surface are both flat, located at y¯Y
"

or Y
#
, and the flow within each film is unidirectional along the x-axis. To derive

expressions for the streamwise velocity profile u
x
(y), we require that the velocity vanish
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g

x

y

n

i

i – 1

θ0

F 6. Schematic illustration of gravity-driven flow of N superimposed films down a plane wall
inclined at an angle θ

!
with respect to the horizontal. The dashed horizontal lines show the positions

of the unperturbed interfaces and of the free surface. The normal vector at the ith interface points into
the ith film which is confined between the interfaces numbered i and i®1; the zeroth interface is the
plane wall.

at the wall, the velocity and shear stress be continuous across the interface, and the
shear stress vanish at the free surface. Using elementary methods, we derive the
expressions

uud,"
x

¯
ρ
"
g sin θ

!

2µ
"

y(2H
"
2βH

#
®y), (3.1a)

uud,#
x

¯
ρ
#
g sin θ

!

2µ
#

0λβH #

"
2λH

"
H

#
®H

"
(2H

#
®H

"
)2(H

"
H

#
) y®y#1 , (3.1b)

where, as in §2, ud stands for unidirectional flow, λ¯µ
#
}µ

"
is the viscosity ratio,

β¯ ρ
#
}ρ

"
is the density ratio, and H

"
, H

#
are the uniform film thicknesses. When (a)

β¯ 1 and λ¯ 1, or (b) one of the film thicknesses H
"
, H

#
vanishes, we recover the

single-film flow.
It is worth noting that the velocity profile across the film next to the wall is

independent of the viscosity of the upper film. This can be explained by writing a
macroscopic force balance for the two-film system, and then using the condition of zero
shear stress at the free surface to show that the wall shear stress is determined by the
densities of the two fluids. Observing that the velocity profile within the wall film is
determined by its kinematic viscosity and the value of the wall shear stress, explains the
aforementioned independence on µ

#
. A similar argument can be made for multi-film

flow.

3.2. Linear interfacial wa�es

Next, we consider the motion subject to a two-dimensional periodic perturbation with
wavelength L that disturbs the interface and free surface in a sinusoidal fashion with
different amplitudes and an arbitrary phase lag. Assuming that the flow occurs under
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conditions of Stokes flow, and that each wave amplitude is small compared to L as well
as to the unperturbed layer thicknesses, we linearize the kinematic and dynamic
interfacial conditions and carry out a normal-mode stability analysis to find that
exponentially growing or decaying interface and free-surface waves are described,
respectively, by the equations

y¯ y
"
(x, t)¯Y

"
ANM,l

"
(t) cos (k(x®cNM,l

P
t)), (3.2a)

y¯ y
#
(x, t)¯Y

#
ANM,l

#
(t) cos (k(x®cNM,l

P
t)®∆φNM,l

#
), (3.2b)

where k¯ 2π}L is the wavenumber, and ∆φNM,l

#
is the phase lag of the free-surface

wave with respect to the interfacial wave for the lth normal mode; the superscript NM
stands for Normal Mode. The amplitudes ANM,l

"
(t) and ANM,l

#
(t) are exponential

functions of time given by

ANM,l
j

(t)¯ANM,l
j

(t¯ 0) exp (σNM,l
I

t) (3.3)

for j¯ 1, 2. For each unperturbed layer configuration, there are two normal modes,
designated by l¯ 1, 2. One of these modes, called the interface mode and identified by
l¯ 1, may be unstable, whereas the second mode, called the free-surface mode and
identified by l¯ 2, is stable in the limit of Stokes flow.

A complete description of the lth normal mode requires the specification of the
following properties : (a) the constant ratio of the amplitudes of the free-surface and
interface waves, rNM,l

#
3ANM,l

#
(t)}ANM,l

"
(t), (b) the phase lag∆φNM,l

#
, (c) the phase

velocity cNM,l
P

, and (d ) the growth rate σNM,l
I

. Loewenherz & Lawrence (1989) and
Chen (1993) presented graphs of selected properties of the interface mode as functions
of several geometrical and physical dimensionless groups including the wavenumber.
Loewenherz & Lawrence first pointed out that when the less-viscous fluid is next to the
wall, and the surface tension is sufficiently small, the flow could be unstable. The
properties of the stable free-surface mode have not been discussed in the limit of zero
Reynolds number.

In investigations of nonlinear instability, it is desirable to specify an initial condition
that corresponds to the most unstable normal mode. But since the complete properties
of this mode are unavailable, we develop a method for extracting them from the results
of a numerical simulation with small deformations. We begin by considering the
motion when the interface and the free surface are perturbed by waves of arbitrary but
sufficiently small amplitude and with an arbitrary phase lag. At the origin of time, the
position of the interface and of the free surface is described by the equations

y¯ y
j
(x, t¯ 0)¯Y

j
A

j
cos (kx®φ

j
) (3.4)

for j¯ 1, 2. Normal-mode decomposition yields

y
j
(x, t¯ 0)¯Y

j
3

#

l="

ANM,l
j

(t¯ 0) cos (kx®φNM,l
j

) (3.5)

for j¯ 1, 2. The arguments of the trigonometric functions in equations (3.5) evolve
according to equations (3.2a, b), and the amplitudes ANM,l

j
(t) evolve according to

equation (3.3). Combining these expressions, we derive evolution equations for
arbitrary linear waves in terms of the properties of the normal modes:

y
j
(x, t)¯Y

j
3

#

l="

ANM,l
j

(t¯ 0) cos (k(x®cNM,l
P

t)®φNM,l
j

) exp (σNM,l
I

t) (3.6)

for j¯ 1, 2.
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To compute the eight unknown constants ANM,l
j

(t¯ 0), φNM,l
j

, for j, l¯ 1, 2, we set
the right-hand side of equation (3.5) equal to the right-hand side of (3.4), and require
that the sums of coefficients of like trigonometric functions balance to zero; this
provides us with a system of four algebraic-trigonometric equations. If the normal-
mode wave amplitude ratios rNM,l

#
and phase lags ∆φNM,l

#
3φNM,l

#
®φNM,l

"
were

available for l¯ 1, 2, we could have invoked their definitions to obtain an additional
set of four equations, and this would raise the total number of unknowns to the number
of the equations. Confronted with the unavailability of the properties of the normal
modes, we express equation (3.6) in the form

y
j
(x, t)¯Y

j
F

j,c
(t) coskxF

j,s
(t) sinkx (3.7)

involving the first-order cosine and sine coefficients of the complete Fourier series of
the functions y

j
(x, t) with respect to x, defined as

F
j,c

(t)¯ 3
#

l="

ANM,l
j

(t¯ 0) cos (σNM,l
R

tφNM,l
j

) exp (σNM,l
I

t), (3.8a)

F
j,s

(t)¯ 3
#

l="

ANM,l
j

(t¯ 0) sin (σNM,l
R

tφNM,l
j

) exp (σNM,l
I

t). (3.8b)

We have introduced the complex growth rate σNM,l
R

¯kcNM,l
P

. The key idea is that the
left-hand sides of equations (3.8a, b) may be expressed as sums of complex
exponentials, and the eight real unknowns ANM,l

j
(t¯ 0), φNM,l

j
, j, l¯ 1, 2, may be

recovered by performing N-mode complex exponential fitting using the method of
Prony (e.g. Hildebrand 1974, pp. 457–463; Kay & Marple 1981; Marple 1987, pp.
303–349).

To implement the method, we write

F
j,c

(t)¯
1

2 3
#

l="

[c(l)
j,c

exp (®iσNM,lt)c(l)*
j,c

exp (iσNM,l*t)], (3.9a)

and

F
j,s

(t)¯
1

2 3
#

l="

[c(l)
j,s

exp (®iσNM,lt)c(l)*
j,s

exp (iσNM,l*t)], (3.9b)

where σNM,l¯σNM,l
R

iσNM,l
I

are the complex rates, i the imaginary unit, an asterisk
designates the complex conjugate, and c(l)

j,c
, c(l)

j,s
, are complex coefficients. Setting the

right-hand sides of (3.9a, b) equal to the right-hand sides of (3.8a, b), we obtain

c(l)
j,c

¯ANM,l
j

(t¯ 0) exp (®iφ(l)
j

), c(l)
j,s

¯ANM,l
j

(t¯ 0) exp (®i(φ(l)
j

®"

#
π)).
(3.10a, b)

Assume now that we have available an (M4)-long time series for F
j,c

(t) with
constant sampling time ∆t, and denote, for brevity, ζ

q
3F

j,c
(q∆t), where q¯ 0, 1, 2,… .

Prony’s method proceeds in four stages. At the first stage, we solve the generally
overdetermined M¬4 linear system of equations

A

B
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#
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"

…

ζ
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ζ
$

ζ
#

…

ζ
M+"
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…
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&
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…
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$
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α
#
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"

C
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C

D

(3.11)
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for the four real unknowns α
"
, α

#
, α

$
, α

%
, where M& 4. At the second stage, we

compute the roots z
"
, z

#
, z

$
, z

%
of the fourth-degree characteristic polynomial

P
%
(z)¯ z%α

"
z$α

#
z#α

$
zα

%
. (3.12)

Since the coefficients of this polynomial are real, complex roots appear in two pairs of
complex conjugates (z

"
, z

#
¯ z$

"
), (z

$
, z

%
¯ z$

$
). At the third stage, we extract the

complex growth rates from the relations

z
"
¯ exp (®iσNM,"∆t), z

#
¯ exp (iσNM,"

*∆t), (3.13a, b)

z
$
¯ exp (®iσNM,#∆t), z

%
¯ exp (iσNM,#

*∆t). (3.13c, d )

Finally, we recover the coefficients c(l)
j,c

by solving a generally overdetermined linear
system of equations arising from (3.9a) using the computed values of σNM," and σNM,#,
and recover ANM,l

j
(t¯ 0), φ(")

j
, ANM,#

j
(t¯ 0), φ(#)

j
, from equations (3.10a, b).

There is an ambiguity in the definition of σNM,l, stemming from our freedom to
freely interchange the complex conjugate roots z

"
and z

#
on the left-hand sides of

equations (3.13a, b), which amounts to replacing σNM," with its complex conjugate on
the right-hand side; similarly for equations (3.13c, d ). To resolve this ambiguity, we
also perform the Prony fitting of the sine coefficient F

j,s
(t) by introducing a time series

for F
j,s

(t), setting ζ
q
3F

j,s
(q∆t), and working in a similar fashion with (3.9b) in place of

(3.9a), thereby recovering a quadruple of values ANM,l
j

(t¯ 0),φ(l)
j

,ANM,l
j

(t¯ 0), φ(l)
l

for
j¯ 1, 2. The proper values of σNM,l are the ones giving the same – in numerical practice,
nearly the same – values of ANM,l

j
(t¯ 0), φ(l)

j
computed from the fitting of F

j,c
(t) or

F
j,s

(t). Combining the results for the interface and for the free surface allows us to
deduce the wave amplitude ratio and phase lag of the normal modes.

3.3. Numerical simulations

To describe the evolution of finite-amplitude waves, we use the boundary-integral
method for Stokes flow with multiple interfaces. In Appendix B, we present a
boundary-integral formulation that is applicable to the general case of multi-film flow
with an arbitrary number of films depicted in figure 6; we derive a Fredholm integral
equation of the second kind for the interfacial and free-surface velocities ; and we
investigate the spectrum of eigenvalues of the double-layer operator. The integral
equation is deflated and solved using an iterative method that is similar to the method
described in §2 for two-layer channel flow.

In the numerical simulations, the initial position of the interface and free surface is
described by equations (3.4). Ten dimensionless parameters affect the evolution of the
flow: the unperturbed layer thickness ratio R¯H

#
}H

"
, the plane inclination angle θ

!
,

the viscosity ratio λ¯µ
#
}µ

"
, the density ratio β¯ ρ

#
}ρ

"
, the capillary numbers Ca

"
¯

ρ
"
gH # sin θ

!
}(2γ

"
) and Ca

#
¯ ρ

"
gH # sin θ

!
}(2γ

#
), the reduced wavelength L}H, the

reduced amplitudes A
"
}H and A

#
}H, and the phase lag∆φ¯φ

#
®φ

"
; H¯H

"
H

#
is

the total layer thickness. Consistent with our main goal, which is to study the effect of
the viscosity contrast, we set β¯ 1, but this still leaves us with a large parametric space
that we explore by case-study investigations.

Consider a system with θ
!
¯ 0.06366π¯ 0.2, λ¯ 2.5, β¯ 1, Ca

"
¯¢, and Ca

#
¯¢.

Chen (1993, figure 4) presented graphs of the reduced growth rate of the unstable
normal mode σWW NM,"

L
3σNM,"

I
H

"
}uud,I against the reduced wavenumber α¯kH

"
, for

several values of the layer thickness ratio R ; uud,I is the interfacial velocity. For
R¯ 0.5 and α¯ 3.75 or L}H¯ 1.117, his results show that σWW NM,"

I
¯ 0.01625. We
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note that uud,I¯ 0.08830 ρ
"
gH #}µ

"
, introduce the reduced growth rate σW NM,"

I
3

σNM,"
I

µ
"
}(ρ

"
gH ), and find σW NM,"

I
¯ 0.0022.

First, we use Prony’s method, implemented as described in §3.2, to extract the
properties of the unstable normal mode. For this purpose, we introduce the complete
Fourier series expansion of the space-periodic function y

"
(x, t) describing the position

of the interface, and of the space-periodic function y
#
(x, t) describing the position of the

free surface, both series with respect x, and truncate them at the fundamental frequency
to obtain equation (3.7). In the numerical simulations, the interfaces are represented by
a set of unevenly spaced marker points, typically on the order or 50, and values of the
functions y

"
(x, t) and y

#
(x, t) are available at the marker point abscissas. The Fourier

coefficients F
j,c

(t), F
j,s

(t) are retrieved from Fourier transform integrals evaluated by the
1}3 Simpson rule with overlapping parabolas (e.g. Pozrikidis 1998, Chap. 8). The
overdetermined systems of equations for the polynomial coefficients and for the
coefficients of the Prony expansion are solved by the normal-equation least-squares
method followed by Cholesky decomposition (e.g. Pozrikidis 1998, Chap. 3).

In figure 7(a), we plot F
j,c

(t),F
j,s

(t), for A
"
}H¯ 0.01, A

#
}H¯ 0.005, φ

"
¯ 0,

φ
#
¯ 0.75π, and observe an initial adjustment period followed by growing oscillations.

The symbols represent the results of Prony’s method with sampling time
∆t¯ 1.5µ

"
}(ρ

"
gH ). To assist the probing of the unstable normal mode, the Prony

fitting of the sine coefficients F
j,s

(t) was done over the indicated time period, following
an initial transient period where the amplitude of the stable normal mode has decayed
leaving the unstable mode. The two-mode fitting of the Fourier coefficients yields
values for σW NM,"

R
3σNM,"

R
µ
"
}(ρ

"
gH ) in the range (0.494, 0.497), and for σW (")

I
in the

range (0.0019, 0.0029) which contains the value 0.0022 predicted by linear theory.
Furthermore, the results suggest that rNM,"

#
E 7 and ∆φNM,"

#
E 0.7π.

It is important to note that the amplitude of the interface wave of the unstable
normal mode is roughly seven times that of the free-surface wave, and this confirms
that, under the conditions of Stokes flow considered here with λ¯ 2.5, Ca

"
¯¢,

Ca
#
¯¢, the instability originates from the interface, with the deformability of the free

surface acting as a controller. In practice, the smallness of the amplitude of the free
surface compared to the amplitude of the interface, the smallness of the growth rate,
and the observation that the flow is stable when the free surface is not deformable,
explains why an accurate numerical method is required to reliably describe the
evolution of the flow.

In figure 7(b), we plot the Fourier coefficients for a disturbance that nearly
corresponds to the unstable normal mode, with A

"
}H¯ 0.035, A

#
}H¯ 0.005, φ

"
¯ 0,

φ
#
¯ 0.70π, and observe an almost pure exponential growth. The one-mode Prony

fitting yields values for σW (")
R

and σW (")
I

in the ranges stated in a previous paragraph. Three
stages in the evolution of the flow, after the interfacial wave has grown to a large
amplitude, are displayed in figure 7(c). The computation ended when small-scale
irregularities developed near the inflection point of the overturning interface, possibly
a precursor of local penetration or wisp formation. The interfacial profile at the last
stage is qualitatively similar to that described in §2 for two-layer channel flow; the free-
surface is remarkably flat.

Next, we consider the effect of interfacial tension γ
"
expressed by the first capillary

number Ca
"
, keeping Ca

#
¯¢. Linear stability analysis predicts that increasing γ

"
reduces the growth rate of an unstable perturbation, and eventually stabilizes the flow.
As a test case, we consider a system with θ

!
¯ 0.06366π¯ 0.2, R¯ 0.75, λ¯ 2.5,

β¯ 1, Ca
"
¯ 15.55, and Ca

#
¯¢, and a perturbation with L}H¯ 1.117 or α¯ 3.21,

amplitudes A
"
}H¯ 0.030, A

#
}H¯ 0.010, and phases φ

"
¯ 0, φ

#
¯ 0.25π. In figure
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F 7. Two-film flow. (a) Evolution of the Fourier coefficients F
j,c

(t), F
j,s

(t) subject to an arbitrary
small-amplitude perturbation for the conditions described in the text, plotted against the reduced
time tW 3 tρ

"
gH}µ

"
; the curves with the large-amplitude oscillations correspond to the interface, and

those with the small-amplitude oscillations correspond to the free surface ; the symbols represent the
results of Prony’s method; circles and diamonds are for the cosine coefficients, squares and triangles
are for the sine coefficients. (b) Same as in (a), but for a disturbance nearly corresponding to the
unstable normal mode. (c) Three stages in the evolution of the flow corresponding to (b), after the
interfacial wave has grown to a large amplitude.
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F 8. Effect of interfacial tension on the stability of two-film flow. (a) Evolution of the Fourier
coefficients F

j,c
(t), F

j,s
(t) subject to an arbitrary small-amplitude perturbations for the conditions

described in the text ; the curves and symbols have the meaning as for figure 7. (b) Initial and evolving
profiles for a large-amplitude perturbation.

8(a), we plot the Fourier coefficients of the interface and free-surface waves ; the
symbols indicate the Prony fitting with sampling time ∆t¯ 1.5 µ

"
}(ρ

"
gH ). The results

show that the waves decay with a dimensionless rate of decay σW NM,"
I

that is close to
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1.12

0

–1.12

–1.12 0 1.12

F 9. Effect of free-surface tension on the stability of two-film flow. Initial and evolving
profiles subject to an arbitrary perturbation for the conditions described in the text.

®0.005, while propagating with a phase velocity corresponding to the real part of a
dimensionless growth rate σW NM,"

R
that is close to 0.45. The graph in figure 5 of Chen

(1993) shows the linear rate σW NM,"
I

¯®0.0035 which is in fair agreement with that
deduced from the simulations. It is striking that a slight amount of surface tension is
able to stabilize the flow. Increasing the amplitude of the perturbation leads to the
permanent deformation for this linearly stable flow. This is exemplified in figure 8(b)
where we present evolving profiles for A

"
}H¯ 0.10, A

#
}H¯ 0.10, keeping all other

parameters constant, up to the point where the simulation is no longer reliable. The
formation of penetrating lobes is a familiar feature of the motion.

As a last topic, we consider the effect of free-surface tensionγ
#
expressed by the second

capillary number Ca
#
for vanishing interfacial tension, Ca

"
¯¢. These conditions are

relevant to photographic coating technology where the fluids are typically miscible and
the tension of the interface is negligible compared to that of the free surface. Linear
stability analysis predicts that increasing γ

#
, and thus diminishing the ability of the free

surface to deform, reduces the growth rate of an unstable perturbation especially at
moderate and small wavelengths. But no finite amount free-surface tension is able to
stabilize a linear unstable flow, especially for long wavelengths. These predictions are
confirmed by the results of the simulations.

A dramatic illustration of how the free-surface wave may decay while the interface
may continue to deform and attempt to overturn is shown in figure 9 for a flow with
θ
!
¯ 0.06366π¯ 0.2,R¯ 0.75, λ¯ 2.5, β¯ 1,Ca

"
¯¢, and Ca

#
¯ 0.498, and a pertur-

bation with L}H¯ 1.117 or α¯ 3.21, A
"
}H¯ 0.10, A

#
}H¯ 0.10, φ

"
¯ 0, φ

#
¯ 0.25π.

At long times, we obtain a configuration with a nearly flat free surface and a
highly deformed interface, which might give the erroneous impression that the presence
of the free surface is irrelevant or secondary. The evolution illustrated in figure 9 is
physically accurate as long as the rate of diffusion of the two fluids into each other is
smaller than the growth rate of the instability, otherwise interface smearing attenuates
the viscosity contrast and decelerates the growth of the waves.
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4. Discussion

In the context of linear theory and under conditions of Stokes flow, interfacial waves
in two-layer channel flow are either stable or neutrally stable, but the numerical
simulations show that even moderate-amplitude perturbations may lead to permanent
deformation. The two-film flow is only conditionally stable according to linear theory;
but even when it is stable, moderate-amplitude perturbations may also lead to
permanent deformation. The morphology of the developing interfacial patterns in
channel flow is similar to that in film flow, and this suggests a common origin for the
unidentified physical mechanisms responsible for large-amplitude deformations.

Considering the predictions of linear stability theory, we draw the discontinuous
profile of the viscosity in channel and film flow – in the second case with the viscosity
of the ambient fluid set equal to zero – smooth out the discontinuities, and make the
following observations: two-layer channel flow is stable or neutrally stable ; three-layer
channel flow can be unstable ; two-film flow can be unstable when the viscosity of the
fluid next to the wall is less than that of the top fluid; multi-film flows can be unstable.
These observations suggest that a necessary condition for instability under conditions
of Stokes flow is that the viscosity profile attains an extreme at some point between the
boundaries of the flow; further analysis is required to affirm or dismiss this conjecture.

We discussed the implementation of Prony’s method for a physical system that is
described by two normal modes, but the extension to higher-order systems described
by p normal modes is straightforward. In the general case, the right-hand side of
equations (3.9) consists of a linear combination of p complex exponentials added to
their complex conjugates (Pozrikidis 1999). An approximate analysis of a system with
an infinite number of normal modes may be conducted by retaining a finite number of
nodes, and then using the Prony fitting to compute the growth rates on the basis of a
time series. This approach, which is an alternative to formulating and then solving a
standard or generalized eigenvalue problem, should be preferable when a time series of
a flow variable can be readily generated by measurement of computation. Preliminary
investigations with Matheu’s equation suggested that the Prony method is a viable
alternative to the Floquet method for assessing the stability of solutions of linear
differential equations.

I am indebted to Professor Bhaskar D. Rao for bringing to my attention Prony’s
method. This research was supported by the National Science Foundation and the
SUN Microsystems Corporation. Acknowledgement is made to the Donors of the
Petroleum Research Fund, administered by the American Chemical Society, for partial
support.

Appendix A. Lubrication model for two-layer flow in a channel

Consider the flow of two layers through the inclined channel confined between two
parallel plates separated by the distance 2H, as depicted in figure 1(a). The flow is
driven partly by the parallel translation of the lower and upper walls along the x axis
with velocities U

"
and U

#
, partly by a mean pressure gradient, and partly by a constant

body-force field due to gravity. In this Appendix, we present an approximate theory
that models the evolution of interfacial waves whose period is long compared to the
channel width, working under the auspices of the lubrication theory in the spirit of
Ooms et al. (1985). The case of Couette and pressure-driven flow was considered earlier
(Pozrikidis 1997c) with some variations.
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We begin by describing the interface by the equation y¯ y
I
(x, t), and then assume

that the flow within each layer is locally unidirectional and the streamwise velocity
profile is given by

u(")¯®
1

2µ
"

0®¥pmod

"

¥x
ρ

"
g sin θ

!1 (y®y
I
)#ξ

"
(y®y

I
)u

I
for y! y

I
(x, t),

(A 1a)
and

u(#)¯®
1

2µ
#

0®¥pmod

#

¥x
ρ

#
g sin θ

!1 (y®y
I
)#ξ

#
(y®y

I
)u

I
for y" y

I
(x, t),

(A 1b)

where pmod

"
(x, t) and pmod

#
(x, t) are the modified pressures including hydrostatic

variations due to gravity, and ξ
"
(x, t) and ξ

#
(x, t) are the shear rates of the lower or

upper fluid, ¥u}¥x, evaluated at the interface. Requiring the no-slip boundary
condition at the walls, we set u(")(y¯®H )¯U

"
and u(#)(y¯H )¯U

#
, and find

ξ
"
¯®0®¥pmod
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¥x
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"
g sin θ
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I
®U

"

h
"

, (A 2a)

ξ
#
¯ 0®¥pmod

#

¥x
ρ

#
g sin θ
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I
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#
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where h
"
(x, t), h

#
(x, t) are the local and instantaneous lower or upper layer thicknesses.

To compute the interfacial velocity, we substitute the right-hand sides of equations
(A2a, b) into the equation µ

"
ξ
"
(x, t)¯µ

#
ξ
#
(x, t) expressing continuity of shear stress,

and find

u
I
¯
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"

h
"
h
#
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"
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®
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¥x
rρ
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, (A 3)

where
r(x, t)3 h

#
(x, t)}h

"
(x, t) (A 4)

is the local and instantaneous layer thickness ratio, λ¯µ
#
}µ

"
, and β¯ ρ

#
}ρ

"
.

Requiring further that the normal stress undergo a jump across the interface, and
relating this jump to the magnitude of the surface tension, we write

pmod

#
¯ pmod

"
®ρ

"
g(1®β) h

"
cos θ

!
γ

¥#h
"

¥x#

. (A 5)

Using this equation to eliminate pmod

#
from equation (A3), we obtain
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. (A 6)

As a check, we confirm that when U
"
¯ 0, U

#
¯ 0, r(x, t)¯R is constant, corresponding

to unidirectional flow, and ¥pmod

"
}¥x¯ 0, equation (A6) reduces to equation (2.3).
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To derive an evolution equation for the interface, we integrate both sides of (A1a,
b) with respect to y over their respective domain of definition, and find the following
expressions for the flow rates :

Q
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"

¥x
ρ

"
g sin θ

!1 h$

"
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"
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#
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I
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, (A 7a)
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Using equations (A2a, b) to eliminate ξ
"
(x, t) and ξ

#
(x, t) from (A7a, b), we obtain the

following alternative expressions in terms of the interfacial velocity :
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and
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Conservation of mass requires
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"
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and since h
"
h

#
¯ 2H is constant
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Integrating equation (A10) with respect to x, substituting expressions (A8a, b) for
the flow rates into the resulting equation, using the interfacial condition (A5) to
eliminate pmod

#
, substituting the right-hand side of (A6) in place of u

I
, and then carrying

out a fair amount of algebra produces the relation
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The function f(t) is evaluated by specifying the modified pressure drop over one period
along each layer, ∆pmod

"
¯∆pmod

#
¯ pmod

"
(xL, t)®pmod

"
(x, t). For shear- or gravity-

driven flow, ∆pmod

"
¯ 0, whereas for pressure-driven flow ∆pmod

"
is a non-zero constant.

Solving equation (A11) for ¥pmod

"
}¥x, substituting the result into equations (A6) and

(A7a), and then putting the resulting expression for the flow rate into equation (A9a),
gives a nonlinear evolution equation for the interface position, which can be expressed
in the symbolic form

¥y
I

¥t
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¥Q
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3F0yI

,
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I
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,
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¥x%
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The right-hand side is a strongly nonlinear function of the arguments of the function
F. When the amplitude of the perturbation is small compared to the wavelength, and
the surface tension is sufficiently high, equation (A12) reduces to the standard
Kuramoto–Sivashinsky equation, as shown, for example, by Charru & Fabre (1994,
§IV).

To generate solutions to equation (A12), we implemented an Euler-explicit and an
Euler-implicit finite-difference method. In both methods, all spatial derivatives
required for the computation of Q

"
were evaluated by centred differences, whereas

¥Q
"
}¥x was computed using either central or backward (upwind) differences. The

performance of the centred-difference method is discussed by Pozrikidis (1997c), and
examples were presented in §2 of this paper. Briefly, upwind differencing is effective in
describing the development and propagation of steep profiles, by suppressing the
growth of spurious oscillations, but the numerical diffusivity may have a significant
effect on the accuracy of the solution.

Appendix B. Boundary-integral formulation for multi-film flow down an
inclined plane

Consider the gravity-driven flow of N superposed liquid films down an inclined
plane, as depicted in figure 6. The film numbered 1 is adjacent to the plane, and the film
numbered N is exposed to the constant ambient pressure. The first interface is adjacent
to the plane, and the Nth interface is a free surface. The density and viscosity of the
ith fluid are noted by ρ

i
µ
i
, with the understanding that µ

N+"
¯ 0 and ρ

N+"
¯ 0, and the

surface tension of the ith interface is denoted by γ
i
. All flow variables and interface

profiles are repeated periodically in the x-direction with period L. In this Appendix, we
present and discuss an integral equation for the fluid velocity over the interfaces and
the free surface.

As a preliminary, we introduce the periodic Green’s function of two-dimensional
Stokes flow in a semi-infinite domain that is bounded by a plane wall, G "P−W(x,x

!
),

and its associated stress tensor T "P−W(x,x
!
). Closed-forms expressions for these

tensors are given by Pozrikidis (1992), and a  subroutine that evaluates them
is available on request. The four scalar components of G "P−W(x,x

!
) represent the

velocity at the point x induced by a periodic array of point forces deployed along the
x-axis above the plane wall, and separated by the distance L ; one of the point forces
is located at the point x

!
. As the observation point x moves away from the wall, all

components of G "P−W(x,x
!
) and T "P−W(x,x

!
) tend to vanish, except for G "P−W

xx
(x,x

!
)

that tends to a constant value depending on the distance of the point forces from the
wall. As the point forces approach the wall, this constant value tends to vanish.

As a second preliminary, we decompose the velocity and pressure within the ith film
into a reference and a disturbance component, denoted by the superscripts R and D,
writing u(i)¯uR(i)uD(i), and p(i)¯ pR(i)pD(i). The reference pressure is constant and
equal to the ambient pressure, and the reference velocity is defined as

uR(i)¯
ρ
i
g sin θ

!

µ
i

y(2H®y) e
x
, (B 1)

where H is the total film thickness in rectilinear flow, and e
x

is the unit vector along
the x-axis. Note that the reference velocities are related by uR(i)¯ (µ

k
}µ

i
) (ρ

i
}ρ

k
)uR(k).

Following standard methodology, we find that for a point x
!

that lies in the mth
interface, m¯ 1,…,N, the fluid velocity satisfies the integral equation
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subject to the following definitions: λ
i
¯µ

i+"
}µ

i
and β

i
¯ ρ

i+"
}ρ

i
are viscosity and

density ratios, with the understanding that λ
N

¯ 0 and β
N+"

¯ 0; I
l
denotes one period

of the lth interface; the unit vector n is normal to the lth interface and points into the
lth layer ; ∆f (l)¯γ

l
κ(l)n(l) is the jump in the traction across the lth interface; κ(l) is the

curvature of the trace of the lth interface in the (x, y)-plane; ∆f R(l) is the jump in
the traction across the lth interface of the reference flows, given by
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The qualifier PV, signifying the principal value of the double-layer potential, applies
only when l¯m. Writing equation (B 2) for m¯ 1,…,N, provides us with a system of
linear Fredholm integral equations of the second kind for the interfacial velocities.

To describe the flow of a single film, we set N¯ 1, λ
"
¯ 0 and β

"
¯ 0, and obtain the

following integral equation for the disturbance velocity :
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This equation was presented earlier by Pozrikidis (1997b ; equation (2.4) with α¯ 2,
β¯ 1, and without the last deflation term), but its properties were not discussed in any
detail.

In practice, we want to solve equation (B 2) by the method of successive substitutions.
To assess the feasibility of doing so, we introduce the associated generalized
homogeneous equation
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and its adjoint equation
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and investigate their spectrum of eigenvalues ω ; φ and ψ are eigenfunctions, and an
asterisk designates the complex conjugate. Note that, when m¯ l¯N, the coefficients
in front of the integrals in the sum on the right-hand sides of equations (B 5) and
(B6) become equal to unity.

We begin the search for the eigenvalues by considering the flow of a homogenous
fluid with viscosity µ

N
, where the velocity field is given by the single-layer potential :
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Far from the wall, the velocity w tends to become uniform and parallel to the wall. The
traction on the lower or upper side of the mth interface, designated by a plus or a minus
sign, is given by
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where the point x
!
lies at the mth interface, the unit normal vector n points into the mth

film, and the qualifier PV applies only when l¯m. Combining equations (B 6) and
(B8) to eliminate the sum, we find
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The rate of energy dissipation of the flow w within the first layer L
"

is given by
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where e is the rate of deformation tensor. The rate of energy dissipation within the
subsequent layers L

j
is given by
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for j¯ 1,…,N. And the rate of dissipation within the semi-infinite region above the top
layer, denoted as L

N+"
, is given by
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Next, we define the projection

P(j)3
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where P(!)¯ 0 because w vanishes on the wall, and combine equations (B 9) and (B10)
to find
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for j¯ 2,…,N, when N" 1, and

D(N+")¯µ
N 01ω11P(N). (B 12c)

To study the spectrum of eigenvalues, we successively eliminate the projections P(j)

among equations (B 12a–c), starting from the top or bottom, and thus obtain a
polynomial equation for ω whose degree is equal to the number of layers, N. The
polynomial coefficients involve the real and non-negative dissipation integrals D(j).
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Unfortunately, it was not possible to derive general results on the location of the
eigenvalues, except in the case of one layer considered in the next subsection. The most
general remark we are able to make is that ω¯®1 is a double eigenvalue; the
associated eigenfunctions over the free surface are equal to those described next for
single-layer flow, and vanish over the interfaces. These eigenvalues may be removed by
the method of Weilandt deflation, as will be described next for single-layer flow. In
practice, we found that, with deflation implemented, the method of successive
substitutions for two-film flow converges rapidly for a broad range of viscosity ratios.

One layer

In the case of one layer, N¯ 1,λ
"
¯ 0, equations (B 5) and (B6) simplify to

φ
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and
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For simplicity, we have omitted the superscripts indicating the interface number. Using
equations (B12a) and (B 12c), we find

D(")¯µ
"0®1

ω
11P("), D(#)¯µ

"01ω11P("). (B 15a, b)

Dividing corresponding sides to eliminate P(") yields a linear equation for ω whose
solution is ω¯ (1δ)}(1®δ) with δ3D(")}D(#). Since D("), D(#), and thus δ is real and
non-negative, ω lies outside the closed interval [®1, 1]. This result, however, presumes
that neither D(") nor D(#) is equal to zero.

The vanishing of D(") demands that the velocity w within the layer express rigid-body
motion, which is prevented by the requirement that w takes zero values over the wall.
We may still have f+¯ cn where c is an arbitrary constant, in which case equation
(B 9) with m¯ 1 and λ

"
¯ 0 yields ψ¯ cnω}(1®ω). Substituting this expression into

equation (B 14), and using the identity
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, (B 16)

where C is one period of a periodic line passing through the singular point x
!
, we find

ω¯®1. Note that equation (B 15b) requires that D(#)¯ 0.
The vanishing of D(#) demands that the velocity w above the layer express rigid-body

motion, but since rotation is precluded by periodicity, and translation normal to the
wall is precluded by the far-field properties of the Green’s function, we are left only
with translation parallel to the wall. Equation (B 9) shows that ψ is proportional to the
traction f + exerted on the upper wall of a channel confined between a stationary plane
lower wall and a periodic upper wall that coincides with the interface. The flow is
generated by the translation of the upper wall parallel to the lower wall. Since the
pressure of the fluid within the channel may be set at an arbitrary level, the traction f+

and thus ψ may be expressed as c
"
f
tr
c

#
n, where f

tr
is any one traction, and c

"
, c

#
are

two arbitrary constants. We note that P(")1 0 when ψ¯ψ(")3 f
tr
, and use equation

(B 15b) to find the eigenvalue ω¯®1.
We thus found that ω¯®1 is a double eigenvalue with eigenfunctions ψ(")3 f

tr
and

ψ(#)¯n. It should be noted that the properties of the present integral equation over a
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periodic interface deviate from those of the same integral equation defined over a
closed interface. In the latter case, the eigenfunction ψ(#) corresponds to the eigenvalue
ω¯ 1 instead of ®1.

One may verify, using the definition of the Green’s function, that the two
eigenfunctions of (B 13) for ω¯®1, denoted as φ(") and φ(#), represent rigid-body
translation along the x- or y-axis, respectively. The adjoint eigenfunction ψ(#)¯n is
orthogonal to the eigenfunction φ("), and may thus be associated with the eigenfunction
φ(#). When the interface is symmetric with respect to its mid-plane over each period,
and this symmetry is exploited in the implementation of the numerical method to
reduce the domain of integration to half the length of the interface, the eigenfunction
φ(") and its adjoint ψ(") do not appear.

In summary, we found that the spectral radius of the double-layer operator is equal
to unity, which undermines the convergence of the method of successive substitutions.
To remove the eigenfunctions of the marginal eigenvalue ω¯®1, we apply the method
of Weilandt deflation. The simplest way of removing the eigenfunction ψ(#), is to add
to the right-hand side of the integral equation (B 4) the deflating term

n
j
(x

!
)

1

Γ
"

&
I"

uD
i
(x) n

i
(x) dl(x), (B 17)

where Γ
"
is the arclength of the free surface over a period (this rectifies a typographical

error in sign on the left-hand side of equations (2.3) and (2.4) of Pozrikidis 1997a).
With this addition, ψ(#) remains an eigenfunction of the associated adjoint generalized
homogeneous equation, but the corresponding eigenvalue has been shifted to infinity.
The eigenfunction φ(") is still present, except when the free surface is symmetric with
respect to the mid-plane, as discussed in the preceding paragraph. In that case, this
partial deflation is sufficient for the method of successive substitutions to produce a
convergent solution.

To achieve complete deflation, we replace uD in equation (B 4) by the modified
velocity �D, and add to the right-hand side the deflating term

1

Γ
"

&
I"

�D
j
(x) dl(x). (B 18)

With this addition, φ(") and φ(#) become eigenfunctions of the associated adjoint
generalized homogeneous equation corresponding to an infinite eigenvalue, while all
other eigenvalues remain unchanged. At the second stage, we solve the resulting
equation by the method of successive substitutions, and recover the disturbance
velocity by setting

uD
j
(x

!
)¯ �D

j
(x

!
)®

1

2

1

Γ
"

&
I"

�D
j
(x) dl(x). (B 19)
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